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The goal of this paper is to present high-order cell-centered schemes for solving the equa-
tions of Lagrangian gas dynamics written in cylindrical geometry. A node-based discretiza-
tion of the numerical fluxes is obtained through the computation of the time rate of change
of the cell volume. It allows to derive finite volume numerical schemes that are compatible
with the geometric conservation law (GCL). Two discretizations of the momentum equa-
tions are proposed depending on the form of the discrete gradient operator. The first one
corresponds to the control volume scheme while the second one corresponds to the so-
called area-weighted scheme. Both formulations share the same discretization for the total
energy equation. In both schemes, fluxes are computed using the same nodal solver which
can be viewed as a two-dimensional extension of an approximate Riemann solver. The con-
trol volume scheme is conservative for momentum, total energy and satisfies a local
entropy inequality in its first-order semi-discrete form. However, it does not preserve
spherical symmetry. On the other hand, the area-weighted scheme is conservative for total
energy and preserves spherical symmetry for one-dimensional spherical flow on equi-
angular polar grid. The two-dimensional high-order extensions of these two schemes are
constructed employing the generalized Riemann problem (GRP) in the acoustic approxima-
tion. Many numerical tests are presented in order to assess these new schemes. The results
obtained for various representative configurations of one and two-dimensional compress-
ible fluid flows show the robustness and the accuracy of our new schemes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

This paper deals with high-order cell-centered discretizations of the Lagrangian hydrodynamics equations written in
cylindrical geometry. The present discretizations are extensions, in two-dimensional axisymmetric geometry, of the cell-
centered Lagrangian schemes described in [24,23]. We note that the high-order extension, which is constructed using the
generalized Riemann problem (GRP) methodology of Ben-Artzi and Falcovitz [6], is genuinely two-dimensional. This axisym-
metric extension is motivated since in many application problems, such as inertial confinement problems, physical domains
have axisymmetric features. In this framework, the importance of preserving spherical symmetry is well recognized, partic-
ularly for the numerical simulations of implosions.

A common feature shared by Lagrangian hydrodynamics methods is that computational cells move with the flow velocity.
In practice, this means that the cell vertices move with a computed velocity, the cell faces being uniquely specified by the
. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2009.06.018
mailto:maire@celia.u-bordeaux1.fr
http://www.celia.u-bordeaux1.fr/~maire
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


P.-H. Maire / Journal of Computational Physics 228 (2009) 6882–6915 6883
vertex positions. Thus, Lagrangian methods can capture contact discontinuity sharply in multimaterial fluid flows. However,
in the Lagrangian framework, one has to discretize not only the gas dynamics equations but also the vertex motion in order
to move the mesh. Moreover, the numerical fluxes of the physical conservation laws must be determined in a compatible
way with the vertex velocity so that the geometric conservation law (GCL) is satisfied, namely the rate of change of a
Lagrangian volume has to be computed coherently with the node motion. This critical requirement is the cornerstone of
any Lagrangian multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in which position, velocity and kinetic
energy are centered at points, while density, pressure and internal energy are within cells. The dissipation of kinetic
energy into internal energy through shock waves is ensured by an artificial viscosity term. Since the seminal works
of von Neumann and Richtmyer [34], and Wilkins [36], many developments have been made in order to improve the
accuracy and the robustness of staggered hydrodynamics [12,10,8]. More specifically, the construction of a compatible
staggered discretization leads to a scheme that conserves total energy in a rigorous manner [11,9]. Concerning the crit-
ical issue related to spherical symmetry preservation many works have been done in the framework of staggered-grid
hydrodynamics. The most widely used method that preserves symmetry exactly on polar grids with equi-angular zoning
is the area weighted method. In this approach one uses a Cartesian form of the momentum equation in cylindrical coor-
dinates system, hence integration is not performed with respect to the true volume in cylindrical coordinates, but rather
with respect to area. However, due to the loss of compatibility between gradient and divergence operators, this formu-
lation, in its usual form, does not allow the conservation of total energy as it has been explained by Whalen [35]. This
flaw has been corrected in [11] by constructing a compatible area-weighted scheme which preserves total energy. In
[27,28], Margolin and Shashkov use a curvilinear grid to construct conservative symmetry preserving discretizations.
Their strategy use high-order curves to connect the nodes, so that planar, cylindrical and spherical symmetry are exactly
maintained while differential operators are discretized in a compatible way. It is worth to mention that this method
preserves symmetry even on polar mesh with non-equal angles. In [13], Caramana and Whalen show how to achieve
the problem of exactly preserving a one-dimensional symmetry, in a two-dimensional coordinate system distinct from
that symmetry. This result is attained through a modification of the pressure gradient operator used to compute the
force in a staggered-grid hydrodynamics algorithm. Regarding the control volume discretization, a general methodology
is described in [26], where a discrete divergence operator is derived by requiring consistency of the divergence of the
velocity field with the time rate of change of volume of a cell. The discrete gradient operator is deduced from the
discrete divergence using conservation of total energy which implies the adjointness of the discrete gradient and diver-
gence operators.

In this paper, we propose an alternative discretization which can be viewed as a Godunov-type method. Following
[15,24], we present a discretization in which all conserved quantities, including momentum, and hence cell velocity are
cell-centered. The main feature of this discretization lies in the fact that the interface fluxes and the node velocity are com-
puted coherently thanks to an approximate Riemann solver located at the nodes. Indeed, the rate of change of any Lagrangian
volume is computed coherently with the nodes displacement. This unstructured scheme, in two and three-dimensional
Cartesian geometry, conserves momentum and total energy [23,25]. It also fulfills a local entropy inequality in its first-order
version. Regarding the axisymmetric extension of these Godunov-type schemes, we observe that recent developments have
been described in [29,31]. However, we note that these extensions are only first-order discretizations and therefore not suf-
ficiently accurate for real-life applications. It is also worth to mention that a special cell-centered method, which preserves
symmetry, has been developed in [33].

Here, we provide high-order discretizations written in Cartesian coordinates devoted to the cylindrical geometry.
Two schemes, which are compatible with the GCL, are obtained through the use of a node-based discretization of
the numerical fluxes. These two schemes differ in the way the momentum equation is discretized. The first one,
which uses a gradient operator compatible with the divergence operator, corresponds to the control volume scheme,
while the second one corresponds to the area-weighted scheme. Both formulations share the same discretization for
the total energy equation. We note that in both schemes fluxes are computed using the same nodal solver which can
be viewed as two-dimensional extension of an approximate Riemann solver. The control volume scheme conserves
momentum, total energy and satisfies a local entropy inequality in its first-order semi-discrete form. However, it does
not preserves spherical symmetry. On the other hand, the area weighted formulation conserves total energy and pre-
serves spherical symmetry for one-dimensional spherical flow computed on equi-angular polar grid. The genuinely
two-dimensional high-order extension of both schemes is constructed utilizing the GRP methodology in its acoustic
approximation.

The remainder of this paper is structured as follows: the governing equations of Lagrangian hydrodynamics, written in
pseudo Cartesian geometry, are described in Section 2. The first-order discretizations corresponding to the control volume
and the area-weighted schemes are derived in Section 3. In this section we also address the problem of symmetry pres-
ervation. The acoustic GRP high-order extension of the previous schemes are detailed in Section 4. Criteria for time step
limitation are presented in Section 5. Numerical experiments, for both formulations, are reported in Section 6. They show
not only the robustness and the accuracy of the present methods but also their abilities to handle successfully complex
two-dimensional flows. More specifically, we show that the area-weighted scheme satisfies the requirement of wavefront
invariance and is able to compute properly isentropic compression. Concluding remarks and perspectives are given in
Section 7.
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2. Lagrangian hydrodynamics in 2D pseudo Cartesian geometry

We are interested in discretizing the equations of the Lagrangian hydrodynamics in pseudo Cartesian geometry, taking
into account under the same form both Cartesian and cylindrical geometry. To this end, we use the same notations as those
introduced by Dukowicz and co-workers in [1].

2.1. Governing equations and notations

In the Lagrangian formalism the rates of change of mass, volume, momentum and total energy are computed assuming
that the computational volumes follow the material motion. This leads to the following set of equations for an arbitrary mov-
ing control volume VðtÞ
d
dt

Z
VðtÞ

qdV ¼ 0; ð1aÞ

d
dt

Z
VðtÞ

dV �
Z

VðtÞ
r � U dV ¼ 0; ð1bÞ

d
dt

Z
VðtÞ

qU dV þ
Z

VðtÞ
$P dV ¼ 0; ð1cÞ

d
dt

Z
VðtÞ

qEdV þ
Z

VðtÞ
r � ðPUÞdV ¼ 0; ð1dÞ
where d
dt denotes the material, or Lagrangian, time derivative. Here, q;U; P; E denote the mass density, velocity, pressure and

specific total energy of the fluid. Eqs. (1a), (1c) and (1d) express the conservation of mass, momentum and total energy. The
thermodynamical closure of the set of Eq. (1) is obtained by adding the equation of state of the form
P ¼ Pðq; eÞ; ð2Þ
where the specific internal energy, e, is related to the specific total energy by e ¼ E � 1
2 kUk2.

We note that volume variation Eq. (1b), which is also named geometric conservation law (GCL), is equivalent to the local
kinematic equation
dX
dt

¼ U; Xð0Þ ¼ x; ð3Þ
where X is a point located on the control volume surface, SðtÞ, at time t > 0 and x corresponds to its initial position.
Let us introduce some notations. First, we note that the case of Cartesian or cylindrical geometry can be combined by

introducing the pseudo Cartesian frame ðO;X;YÞ, equipped with the orthonormal basis ðeX ; eY Þ, through the use of the pseudo
radius
RðYÞ ¼ 1 � a þ aY;
where a ¼ 1 for cylindrical geometry and a ¼ 0 for Cartesian geometry. We remark that Y corresponds to the radial coordi-
nate in the cylindrical case. This means that we assume rotational symmetry about X axis, refer to Fig. 1. We note that if we
refer to standard cylindrical coordinates, ðZ;RÞ, then X corresponds to Z and Y to R. In this framework, the volume V is ob-
Fig. 1. Notations related to the pseudo Cartesian geometry.
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tained by rotating the area A about the X axis. Thus, the volume element, dV , writes dV ¼ RdA, where dA ¼ dXdY is the area
element in the pseudo Cartesian coordinates. Note that we have omitted the factor 2p due to the integration in the azimuthal
direction, namely we consider all integrated quantities to be defined per unit radian. The surface S, which bounds the volume
V, is obtained by rotating, L, the boundary of the area A, about the X axis. Thus, the surface element, dS, writes dS ¼ RdL,
where dL is the line element along the perimeter of A.

2.2. Definition of the divergence and the gradient operators

In view of subsequent spatial discretization, we shall express the volume integrals associated with the divergence and
gradient operators using the Green formula. We recall that, in the pseudo Cartesian frame, the divergence operator writes
r � U ¼ @u
@X

þ 1
R

@

@Y
ðRvÞ ¼ @u

@X
þ @v
@Y

þ a
v
R ¼ 1

R
@

@X
ðRuÞ þ @

@Y
ðRvÞ

� �
;

where ðu;vÞ are the components of the vector U. The gradient operator writes as usual
$P ¼ @P
@X

eX þ @P
@Y

eY :
Let us replace the volume integral form of the divergence operator by its surface integral form, employing the previous
notations
Z

V
r � U dV ¼

Z
A

1
R

@

@X
ðRuÞ þ @

@Y
ðRvÞ

� �
RdA ¼

Z
A

@

@X
ðRuÞ þ @

@Y
ðRvÞ

� �
dA ¼

Z
L

U � NRdL;
where N is the unit outward normal associated with the contour L. Thus, the Green formula in the pseudo Cartesian frame-
work reads
Z

V
r � U dV ¼

Z
L

U � NRdL: ð4Þ
To derive the surface integral form of the gradient operator, we use the vectorial identity
U � $P ¼ r � ðPUÞ � Pr � U;
which holds for any vector U. The integration of this identity over the volume V, using the previous notations and the above
Green formula, leads to
Z

V
U � $P dV ¼

Z
L

PU � NRdL �
Z

A
Pr � URdA:
Assuming a constant U vector, we finally get
Z
V
$P dV ¼

Z
L

PNRdL � aeY

Z
A

P dA; ð5Þ
since for a constant U vector, we have r � U ¼ a
R U � eY . We have expressed the volume integral of the gradient operator as a

function of a surface integral plus a source term, using a vectorial identity, which ensures the compatibility with the surface
integral form of the divergence operator. This approach leads to a discretization which is known as control volume formula-
tion. An alternative approach to define the surface integral form of the gradient operator is obtained by setting
Z

V
$P dV ¼

Z
A
$PRdA ¼ R

Z
A
$P dA:
Here, we have used the mean value theorem, hence R is defined as the averaged pseudo radius
R ¼ 1
jAj

Z
A

RdA; ð6Þ
where jAj ¼
R

A dA is the surface of the area A. We remark that in the case of Cartesian geometry R ¼ 1 since a ¼ 0. Finally,
applying the Green formula once again, we get
Z

V
$P dV ¼ R

Z
L

PN dL: ð7Þ
We recover the Cartesian definition of the gradient operator weighted by the averaged pseudo radius. This alternative ap-
proach leads to the so-called area-weighted formulation. We point out that, in this case, the compatibility between the surface
integrals of the divergence and gradient operators has been lost. Let us note that formulae (7) and (5) coincide in the case of
the Cartesian geometry since a ¼ 0 and R ¼ 1.

In what follows, we shall derive and thoroughly analyze the discrete schemes deduced from the control volume and the
area weighted formulations.
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Comment 1. We remark that if the scalar P is constant over the volume V, then Eq. (5) yields the following geometric
identity
Z

L
NRdL ¼ ajAjeY ; ð8Þ
which can also be written component-wise
Z
L

NXRdL ¼ 0;Z
L

NY RdL ¼ ajAj;
where ðNX ;NY Þ are the components of the N unit outward vector. For a ¼ 0, we recover the well known result, that for a
closed contour, the integral of the normal over this contour is equal to zero. Note that this result does not hold anymore
in the case of cylindrical geometry.
2.3. Control volume formulation

Using the previous results and particularly the gradient operator defined by Eq. (5), we rewrite the set of Eq. (1) in a con-
trol volume formulation
m
d
dt

1
q

� �
�
Z

L
U � NRdL ¼ 0; ð9aÞ

m
d
dt

hUi þ
Z

L
PNRdL � aeY

Z
A

P dA ¼ 0; ð9bÞ

m
d
dt

hEi þ
Z

L
PU � NRdL ¼ 0: ð9cÞ
Here, m ¼
R

V qdV denotes the mass of the volume V, which is constant according to Eq. (1a). For any fluid variable /; h/i
denotes its mass density average, i.e.
h/i ¼ 1
m

Z
V
q/dV :
Introducing jV j ¼
R

A RdA the measure of the volume V, Eq. (9a) is rewritten as a geometric conservation law:
d
dt

jV j �
Z

L
U � NRdL ¼ 0: ð10Þ
Using the identity (8) derived in Comment 1, we rewrite the source term in the momentum equation as a flux term and get
m
d
dt

hUi þ
Z

L
ðP � PÞNRdL ¼ 0; ð11Þ
where P denotes the surface averaged pressure defined as follows
P ¼ 1
jAj

Z
A

P dA:
The set of the previous equations will be used in the subsequent sections in order to derive the control volume discretization.

2.4. Area-weighted formulation

The area-weighted formulation is obtained through the use of identity (7) for the gradient operator definition. In compar-
ison to the control volume formulation, it differs only in the momentum equation. Using the notations previously introduced,
the area weighted formulation of the momentum equation writes
m
d
dt

hUi þ R
Z

L
PN dL ¼ 0; ð12Þ
where the averaged pseudo radius has been defined in (6). We point out that, in the case of Cartesian geometry R ¼ 1, the
area weighted formulation coincides with the control volume formulation.

Knowing that m ¼ jV jh1
q i�1 and R ¼ jV j

jAj, the momentum Eq. (12) can be rewritten
l d
dt

hUi þ
Z

L
PN dL ¼ 0; ð13Þ
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where l ¼ jAjh1
q i�1 denotes the Cartesian inertia. Thus, Eq. (13) can be viewed as a momentum equation written in Cartesian

geometry. We note that the Cartesian inertia is not a Lagrangian mass (e.g. it is not constant as time evolves).

3. First-order spatial discretization

The aim of this section is to establish the first-order spatial discretization of the Lagrangian hydrodynamics equations in
pseudo Cartesian geometry. To this end, we introduce a node-based discretization of the face fluxes which is compatible with
the GCL. According to the choice that is made for the discrete gradient operator, we construct a control volume and an area
weighted discretization. We investigate for both discretizations the important problem corresponding to symmetry preser-
vation. Finally, we construct a nodal solver which equally applies for both formulations.

3.1. Notations and assumptions

Let us consider a physical domain VðtÞ that is filled with the fluid at time t. We assume that we can map VðtÞ by a set of
polygonal cells without gaps or overlaps. Each cell is assigned a unique index c, and is denoted by XcðtÞ. Each vertex of the
mesh is assigned a unique index p and we denote by PðcÞ the counterclockwise ordered list of vertices of the cell XcðtÞ.

3.2. Face flux discretization for the polygonal cell XcðtÞ

3.2.1. Face flux discretization associated with the control volume formulation
To get the discrete evolution equations for the primary variables 1

q ;U; E
� �

, we apply the control volume formulation (9) to

the polygonal cell XcðtÞ, which has been rotated about X axis (refer to Fig. 2). Let mc denotes the constant mass of this cell. We
introduce for each flow variable /, its mass-averaged value defined by
/c ¼ 1
mc

Z
XcðtÞ

q/dV ;
then system (9) writes
mc
d
dt

1
qc

� 	
�
X

f 2FðcÞ
Rc

f Lc
f Uc

f � Nc
f ¼ 0; ð14aÞ

mc
d
dt

Uc þ
X

f 2FðcÞ
Rc

f Lc
f P

c
f Nc

f � aAcPceY ¼ 0; ð14bÞ

mc
d
dt

Ec þ
X

f 2FðcÞ
Rc

f Lc
f ðPUÞc

f � Nc
f ¼ 0: ð14cÞ
Here, we have used the index f to denote a generic face of the cell Xc whose vertices are point p and pþ, refer to Fig. 2. Lc
f

denotes the length of this face, Rc
f ¼ 1

2 ðRp þ Rpþ Þ is the pseudo radius of its midpoint and Nc
f its unit outward normal. We

remark that the product Rc
f Lc

f is nothing but the surface generated by the rotation of the face f about X axis. We have also
Fig. 2. Notations related to the polygonal cell XcðtÞ.
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introduced the set FðcÞ, which is the set of the faces of cell Xc . In the source term of the momentum equation Ac stands for
the surface of the polygonal cell Xc. The face fluxes Uc

f ;P
c
f ; ðPUÞc

f are defined as follows
Uc
f ¼ 1

Rc
f Lc

f

Z
f

URdL; ð15aÞ

Pc
f ¼ 1

Rc
f Lc

f

Z
f

PRdL; ð15bÞ

ðPUÞc
f ¼ 1

Rc
f Lc

f

Z
f

PURdL: ð15cÞ
Using the previous notations, the geometric identity (8) writes under the discrete form
X
f 2FðcÞ

Rc
f Lc

f Nc
f ¼ aAceY : ð16Þ
With the help of this discrete geometric identity, we rewrite the momentum equation transforming the source term into a
flux term
mc
d
dt

Uc þ
X

f 2FðcÞ
Rc

f Lc
f ðP

c
f � PcÞNc

f ¼ 0: ð17Þ
The local kinematic equation in its discrete form at point p is written
d
dt

Xp ¼ Up; Xpð0Þ ¼ xp; ð18Þ
where Xp ¼ ðXp;YpÞt denotes the position of point p at time t > 0; xp being its initial position and Up its velocity.

3.2.2. Face flux discretization associated with the area-weighted formulation
In the case of the area-weighted formulation, we discretize momentum equation using Eq. (12) which has been derived in

the previous section and get
mc
d
dt

Uc þ Rc

X
f 2FðcÞ

Lc
f
bPc

f Nc
f ¼ 0: ð19Þ
Here, Rc denotes the cell-averaged pseudo radius, defined using (6) by Rc ¼ Vc
Ac

, where Vc stands for the volume of the cell Xc

rotated about X axis. The pressure flux, bPc
f , corresponding to the area weighted formulation writes
bPc
f ¼ 1

Lc
f

Z
f

P dL: ð20Þ
We point out that its definition quite differs from that of the pressure flux originating from the control volume formulation,
previously given in (15b).

Introducing mc ¼ qcVc and Vc ¼ RcAc in the momentum Eq. (19), we rewrite it
lc
d
dt

Uc þ
X

f 2FðcÞ
Lc

f
bPc

f Nc
f ¼ 0; ð21Þ
where lc ¼ qcAc stands for the Cartesian inertia. We remark that the discrete area-weighted momentum equation is nothing
but the discrete momentum equation written in Cartesian geometry. However, in the case of cylindrical geometry, we note
that the Cartesian inertia is not a Lagrangian quantity, e.g. it is not constant during time.

3.2.3. Motivations related to the face flux discretization
System (14) represents the face flux discretization of the Lagrangian hydrodynamics equations, issued from the control

volume formulation, for the discrete variables 1
qc
;Uc; Ec

� �
. In order to compute the time evolution of the flow variables, we

need to calculate the face fluxes Uc
f , Pc

f and ðPUÞc
f . We also provided the face flux discretization originating from the area

weighted formulation. In this case the time evolution of the flow variables is governed by Eqs. (14a), (19) and (14c). Thus,
the evaluation of the face fluxes Uc

f , bPc
f and ðPUÞc

f is needed. In what follows, we shall study thoroughly both discretizations
from the point of view of symmetry preservation. More precisely, we will show why the control volume discretization does
not preserve spherical symmetry whereas the area weighted discretization ensures it. This important problem will be stud-
ied considering a one-dimensional spherical flow computed on an equi-angular polar grid.

Let us remark that, for both formulations, the knowledge of the point velocity Up is required in order to move the mesh.
Moreover, we point out that Eq. (14a) is not only a physical conservation law but also a geometrical conservation law, since
mc
qc

¼ Vc . Hence, the face flux Uc
f associated with this equation must be computed in a coherent manner with the point velocity

Up so that the volume variation remains coherent with the point motion. This critical requirement must be fulfilled in order
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to ensure that the GCL is properly satisfied. In Section 3.4, we will address this problem defining a compatible discrete diver-
gence operator and expressing the face flux Uc

f in terms of the point velocity Up.

3.3. The issue of symmetry preservation

The aim of this section is to compare the control volume formulation and the area-weighted formulation regarding the
issue of symmetry preservation. More precisely, we address the problem of preserving spherical symmetry in two-dimen-
sional cylindrical geometry. Being given a one-dimensional spherical flow on a polar grid, equally spaced in angle, we ana-
lyze the ability of the discrete gradient operator to maintain spherical symmetry. Using the previous notations, the discrete
gradient operator over the cell Xc writes
h$PiCV
c ¼ 1

Vc

X
f 2FðcÞ

Rc
f Lc

f Pc
f � Pc

� �
Nc

f ; for the control volume formulation; ð22aÞ

h$PiAW
c ¼ Rc

Vc

X
f 2FðcÞ

Lc
f
bPc

f Nc
f ; for the area-weighted formulation; ð22bÞ
where the face fluxes, Pc
f and bPc

f , are defined according to (15b) and (20). The quadrangular cell Xc is surrounded by the four
cells Xb;Xr ;Xt ;Xl, the indices corresponding to the bottom, right, top and left positions. The equal angle polar grid, displayed
in Fig. 3, is characterized by the angle Dh. The quantities associated with a face shared by the cells Xc and Xd are denoted by
the double subscript index c; d for d ¼ b; r; t; l. Since velocity field is radial, in each cell Xc the cell-centered velocity is written
Uc ¼ Ucec , where ec denotes the radial outward unit vector defined at the center of the cell and Uc is the magnitude of the
velocity. Due to the spherical symmetry of the flow, the thermodynamical quantities and the velocity magnitude associated
with the cells Xb;Xc and Xt are equal.

Now, to achieve the definition of the discrete gradient operators, we compute the face fluxes, Pc
f and bPc

f , using an approx-
imate Riemann problem, which is defined at the cell face. Let us consider the cell face, f ¼ ðc; dÞ, shared by the cells Xc and Xd.
The corresponding Riemann problem is defined by the two states ðqc;Uc; PcÞ and ðqd;Ud; PdÞ which are located on either side
of the face. The solution of the Riemann problem provides the unique pressure PH

c;d and normal velocity VH

c;d of the face. Using
the acoustic approximation, one gets
PH

c;d ¼ ZdPc þ ZcPd

Zc þ Zd
� ZcZd

Zc þ Zd
ðUd � UcÞ � Nc

c;d;

VH

c;d ¼
ðZcUc þ ZdUdÞ � Nc

c;d

Zc þ Zd
� Pd � Pc

Zc þ Zd
;

where Nc
c;d denotes the unit outward normal related to the cell Xc and the face ðc; dÞ, and Zc is the acoustic impedance of the

cell Xc , i.e. the density times the isentropic sound speed. Since PH

c;d is constant over the face, we get immediately
Pc

c;d ¼ bPc
c;d ¼ PH

c;d. Using the previous assumptions, elementary geometric computations lead to the following expressions
for the face fluxes in the angular direction
PH

c;b ¼ PH

c;t ¼ Pc � ZcUc sin
Dh
2

� 	
: ð23Þ
Fig. 3. Equal angle polar grid.
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We point out the discrepancy with the constant pressure Pc due to the direction of the cell-centered velocity. The face fluxes
in the radial direction writes
PH

c;r ¼ ZrPc þ ZcPr

Zc þ Zr
� ZcZr

Zc þ Zr
ðUr � UcÞ;

PH

c;l ¼ ZcPl þ ZlPc

Zl þ Zc
� ZlZc

Zl þ Zc
ðUc � UlÞ:
In the case of the control volume formulation, substituting the previous expressions of the face fluxes in (22a) we get
Vch$PiCV
c ¼ Rc

c;rL
c
c;r PH

c;r � Pc

� �
� Rc

c;lL
c
c;l PH

c;l � Pc

� �h i
ec þ PH

c;t � Pc

� �
Rc

c;bLc
c;bNc

c;b þ Rc
c;tL

c
c;tN

c
c;t

� �
:

The first term in the right-hand side, which corresponds to the contribution of the face fluxes in the radial direction, is clearly
radial. The second one, which corresponds to the contribution of the face fluxes in the angular direction, is not radial since
PH

c;t � Pc – 0, according to Eq. (23), hence it is responsible for the loss of symmetry. Therefore, the control volume formulation
is not able to preserve symmetry. This shortcoming could be addressed by modifying slightly the left and the right states of
the Riemann problem at each face. Namely, it is sufficient to replace the cell-centered velocities on both sides of the face by
their corresponding interpolated values in angle, at the midpoint of the face. In this way, the viscous part of the interface
pressure cancels, which implies PH

c;b ¼ PH

c;t ¼ Pc. Therefore, using this modification, the symmetry preservation can be ensured
on equi-angular polar grid. We note that similar observation can be found in [7].

In the case of the area-weighted formulation, using the previous results, the discrete gradient operator over the cell Xc

writes
h$PiAW
c ¼ Rc

Vc
Lc

c;rP
H

c;r � Lc
c;lP

H

c;l

� �
ec þ Lc

c;tP
H

c;tN
c
c;t þ Lc

c;bPH

c;bNc
c;b

h i
:

Recalling that the face fluxes in the angular direction are equal and knowing that Lc
c;tN

c
c;t þ Lc

c;bNc
c;b ¼ � Lc

c;r � Lc
c;l

� �
ec , it is clear

that the gradient operator is colinear to the radial vector ec , thus leading to symmetry preservation for the area weighted
discretization.

3.4. Compatible discretization of the GCL

Knowing that mc
qc

¼ Vc , Eq. (14a) is rewritten
dVc

dt
�
X

f 2FðcÞ
Rc

f Lc
f Uc

f � Nc
f ¼ 0:
The volume of the cell Xc;Vc , is a function of the coordinates Xp of point p for p 2 PðcÞ. We compute this volume performing
the triangular decomposition displayed in Fig. 4. That is, using the Guldin theorem, we compute the summation of the vol-
umes obtained by rotating the triangle O; p; pþ about X axis, and we finally get
Vc ¼ 1
2

X
p2PðcÞ

1
3

RO þ Rp þ Rpþ

 �

ðXp � Xpþ Þ � eZ ; ð24Þ
where eZ ¼ eX � eY . Note that RO denotes the pseudo radius corresponding to the origin, which is defined by RO ¼ 1 for
Cartesian geometry and RO ¼ 0 for cylindrical geometry. Following Whalen [35], we time differentiate the volume and after
some rearrangements we obtain
Fig. 4. Triangular decomposition of the polygonal cell Xc .
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d
dt

Vc ¼ 1
2

X
p2PðcÞ

Rp� þ 2Rp

3
Lpp� Npp� þ Rpþ þ 2Rp

3
Lppþ Nppþ

� 	
� Up;
where Lpp� ; Lppþ are the lengths of the edges ½p�; p�; ½p; pþ� and Npp� ;Nppþ are the corresponding unit outward normals. Shifting
indices in the summation, the previous equation becomes
d
dt

Vc ¼ 1
2

X
p2PðcÞ

Rpþ þ 2Rp

3
Up þ Rp þ 2Rpþ

3
Uþ

p

� 	
� Lppþ Nppþ : ð25Þ
The comparison of this equation to the one resulting from the face flux discretization, refer to (14a), shows that they are
equivalent provided that the face velocity, Uc

f , corresponding to the edge ½p; pþ� is written
Rc
f Uc

f ¼ 1
2

2Rp þ Rpþ

3
Up þ Rp þ 2Rpþ

3
Upþ

� 	
: ð26Þ
Here, we have used the fact that Lppþ ¼ Lc
f ; Nppþ ¼ Nc

f and Rc
f ¼ 1

2 Rp þ Rpþ

 �

. We remark that this condition could have been
obtained computing the integral (15a) expressing the velocity field along the edge with the help of a linear interpolation.
Now, we can conclude that the most obvious way to satisfy the compatibility condition (26) consists in first computing
the point velocity Up, then deducing the face velocity Uc

f . Proceeding in this manner, the compatibility of the face discreti-
zation of the geometric conservation law with the time rate of change of the cell volume is always ensured.

Let us introduce some specific notations which shall be used throughout the present paper. To describe the half lengths
and the unit outward normals which originate from point p, we set
Lc
p ¼ 1

2
Lpp� ; Lc

p ¼ 1
2

Lppþ ;

Nc
p ¼ Npp� ; Nc

p ¼ Nppþ :
We also define the pseudo radii Rc
p and Rc

p which are written
Rc
p ¼ 1

3
2Rp þ Rp�

 �

; Rc
�p ¼ 1

3
2Rp þ Rpþ

 �

:

With the help of these notations, the GCL is rewritten in the following form
d
dt

Vc ¼
X

p2PðcÞ
Rc

pLc
pNc

p þ Rc
pLc

pNc
p

� �
� Up: ð27Þ
Finally, we employ the previous results to derive the discrete divergence operator over the cell Xc
hr � Uic ¼ 1
Vc

dVc

dt
¼ 1

Vc

X
p2PðcÞ

Rc
pLc

pNc
p þ Rc

pLc
pNc

p

� �
� Up: ð28Þ
As it has been noticed in [35], the geometric vector between parenthesis, which is called the node area vector, can be iden-
tified with the differential of the cell volume with respect to the node position vector. We also point out that, using this node
area vector, we can recover another form of the geometric identity (8), which shall be used in what follows
X

p2PðcÞ
Rc

pLc
pNc

p þ Rc
pLc

pNc
p

� �
¼ aAceY : ð29Þ
This formula coincides with Eq. (16) since
X
p2PðcÞ

Rc
pLc

pNc
p þ Rc

pLc
pNc

p

� �
¼ 1

6

X
p2PðcÞ

2Rp þ Rp�

 �

Lpp� Npp� þ 2Rp þ Rpþ

 �

Lppþ Nppþ
� 


¼ 1
6

X
p2PðcÞ

2Rpþ þ Rp

 �

Lppþ Nppþ þ 2Rp þ Rpþ

 �

Lppþ Nppþ
� 


¼ 1
2

X
p2PðcÞ

Rp þ Rpþ

 �

Lppþ Nppþ

¼
X

f 2FðcÞ
Rc

f Lc
f Nc

f :
Here, we have shifted the indices in the following way: p� ! p and p ! pþ.

3.5. Node-based discretization of the momentum equation

In this section we present the discretization of the momentum equation for the control volume and the area weighted
formulations. This discretization is obtained through the use of the discrete gradient operator associated with each formu-
lation. The discrete gradient operators over the cell Xc are constructed introducing two nodal pressures at each node p of the
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cell Xc . These pressures are denoted Pc
p and Pc

p, see Fig. 5, they can be seen as nodal pressures viewed from cell Xc and re-
lated to the two edges impinging at node p.

3.5.1. Control volume formulation
In the case of the control volume formulation, the discrete gradient operator is derived in a compatible manner using the

discrete divergence operator defined by Eq. (28). Hence, employing the nodal pressures Pc
p and Pc

p, the discrete gradient
operator writes
h$PiCV
c ¼ 1

Vc

X
p2PðcÞ

Rc
pLc

pP
c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� aAcPceY

" #
: ð30Þ
Using this discrete gradient operator, the momentum equation is rewritten
mc
d
dt

Uc þ
X

p2PðcÞ
Rc

pLc
pP

c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� aAcPceY ¼ 0: ð31Þ
We have obtained a node-based discretization for the momentum equation which is equivalent to the face flux discretization
(14b) provided that the momentum face flux satisfies
Rc
f P

c
f ¼ 1

2
2Rp þ Rpþ

3
Pc

p þ Rp þ 2Rpþ

3
Pc

pþ

� 	
:

Once again, we note that this condition amounts to a linear interpolation of the pressure along face f ¼ ½p; pþ�.

3.5.2. Area-weighted formulation
The discrete gradient operator over the cell Xc corresponding to the area-weighted formulation is defined as follows
h$PiAW
c ¼ Rc

Vc

X
p2PðcÞ

Lc
pP

c
pNc

p þ Lc
pP

c
pNc

p; ð32Þ
where Rc ¼ Vc
Ac

is the cell-averaged pseudo radius. We deduce the following discretization for the momentum equation
mc
d
dt

Uc þ Rc

X
p2PðcÞ

Lc
pP

c
pNc

p þ Lc
pP

c
pNc

p ¼ 0: ð33Þ
This nodal flux discretization of the momentum equation is equivalent to the face flux discretization (19) provided that the
momentum face flux satisfies
bPc
f ¼ 1

2
Pc

p þ Pc
pþ

� �
;

which corresponds to a linear interpolation of the pressure along the face. Using the definition of the cell-averaged pseudo
radius, we note that the momentum equation can be rewritten
lc
d
dt

Uc þ
X

p2PðcÞ
Lc

pP
c
pNc

p þ Lc
pP

c
pNc

p ¼ 0; ð34Þ
Fig. 5. Localization of the nodal pressures given by the half Riemann problems at point p viewed from cell Xc .
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recalling that lc ¼ qcAc is the Cartesian inertia associated with cell Xc . We point out that in the case of Cartesian geometry
Eqs. (31) and (33) coincide. Hence, both formulations reduce to the classical Cartesian discretization, which has been previ-
ously derived in [24,25,23].

3.5.3. Expression of the nodal pressures
To close this section, we show how to express the nodal pressures in terms of the point velocity. Since the velocity of the

edges ½p; p�� and ½p; pþ�, in the vicinity of point p, is equal to the nodal velocity Up, the nodal pressures are computed using the
following half approximate Riemann problems
Pc � Pc
p ¼ Zc

pðUp � UcÞ � Nc
p; ð35aÞ

Pc � Pc
p ¼ Zc

pðUp � UcÞ � Nc
p: ð35bÞ
Here, Zc
p; Z

c
p are mass fluxes swept by the waves. To determine these coefficients we follow the approach suggested by Du-

kowicz [16] setting
Zc
p ¼ qc ac þ CcjðUp � UcÞ � Nc

pj
h i

; ð36aÞ

Zc
p ¼ qc ac þ CcjðUp � UcÞ � Nc

pj
h i

; ð36bÞ
where ac is the local isentropic speed of sound and Cc is a material-dependent parameter that is given in terms of the density
ratio in the limit of very strong shocks. In the case of gamma law gas one gets Cc ¼ cþ1

2 . We note that for Cc ¼ 0, we recover
the classical acoustic approximation and the coefficients Zc

p and Zc
p reduce to the acoustic impedance of the cell Xc , which is

denoted by Zc .

Comment 2. Let us consider a uniform fluid flow characterized by the constant state ðq0;U0; P0Þ. Assuming that the nodal
velocity, Up, is equal to the uniform flow velocity, U0, Eq. (35) implies Pc

p ¼ Pc
p ¼ P0. Therefore, the discrete gradient

operators corresponding to both formulations writes
h$P0iCV
c ¼ 1

Vc

X
p2PðcÞ

P0 Rc
pLc

pNc
p þ Rc

pLc
pNc

p

� �
� aAcP0eY

" #
;

h$P0iAW
c ¼ Rc

Vc

X
p2PðcÞ

P0 Lc
pNc

p þ Lc
pNc

p

� �
:

Thus, applying the geometric identity (29) for a ¼ 0 and a ¼ 1, we get h$P0iCV
c ¼ h$P0iAW

c ¼ 0. This shows that our discrete
gradient operators are consistent in the sense that they preserve uniform flows.
3.6. Node-based discretization of the total energy equation

Using the definition of the discrete divergence operator and the nodal pressures previously introduced, we deduce the
node-based discretization of the total energy equation
mc
d
dt

Ec þ
X

p2PðcÞ
Rc

pLc
pP

c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� Up ¼ 0: ð37Þ
We claim that this node-based discretization is equivalent to the face flux discretization (14c) provided that
Rc
f ðPUÞc

f ¼ 1
2

2Rp þ Rpþ

3
Pc

pUp þ Rp þ 2Rpþ

3
Pc

pþ Upþ

� 	
:

3.7. Construction of a nodal solver

The aim of this section is to construct a nodal solver which shall provide the nodal velocity Up and the nodal pressures for
both formulations. The evaluation of these nodal quantities relies on an argument of total energy conservation.

3.7.1. The issue of total energy conservation
First, let us show why the interface pressure on each face is not uniquely defined on the contrary to the classical finite

volume approach. Consider the face ½p; q� shared by the cells Xc and Xd. As it is displayed in Fig. 6, we have introduced
two nodal pressures on ½p; q� viewed from cell Xc: Pc

p;P
c
q, and two nodal pressures on ½p; q� viewed from cell Xd : Pd

p;P
d
q.

The nodal pressures related to node p are written according to Eq. (35)
Pc � Pc
p ¼ ZcðUp � UcÞ � Nc

p;

Pd � Pd
p ¼ �ZdðUp � UdÞ � Nc

p:



Fig. 6. Nodal pressures related to the face ½p; q� shared by cells Xc and Xd .
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Note that here, in order to simplify the computations, we have used the acoustic approximate Riemann solver, and Zc , Zd

denote the acoustic impedance of the cells Xc and Xd. By subtracting the second equation from the first one we obtain
Pd
p � Pc

p ¼ ðZc þ ZdÞ Up � Nc
p � VH

c;d

� �
; ð38Þ
where VH

c;d is the normal component of the Riemann velocity
VH

c;d ¼ ZcUc þ ZdUd

Zc þ Zd
� Nc

p � Pd � Pc

Zc þ Zd
:

This normal velocity corresponds to the one-dimensional solution of the acoustic Riemann problem in the direction of the
unit normal Nc

p. Eq. (38) shows that the nodal pressures are equal if and only if the projection of the node velocity onto the
unit normal is equal to the one-dimensional normal component of the Riemann velocity. Since in general Up � Nc

p–VH

c;d, we
have the discontinuity Pd

p–Pc
p. The discontinuity of these pressures across the face implies the loss of total energy conser-

vation, on the contrary to the 1D Riemann solver classical approach. We shall show hereafter how to recover total energy
conservation by imposing an additional constraint which will be the main ingredient to construct the nodal solver.

To address this issue, let us write the global balance of energy without taking into account the boundary conditions. The
summation of the total energy Eq. (37) over all the cells leads to
d
dt

X
c

mcEc

 !
¼ �

X
c

X
p2PðcÞ

Rc
pLc

pP
c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� Up:
Switching the summation over cells and the summation over nodes in the above right-hand side, one gets
d
dt

X
c

mcEc

 !
¼ �

X
p

X
c2CðpÞ

Rc
pLc

pP
c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� Up;
where CðpÞ is the set of the cells around point p. Total energy is conserved provided that the term between parentheses in the
right-hand side is null. This enables us to provide the following sufficient condition which ensures total energy conservation
X

c2CðpÞ
Rc

pLc
pP

c
pNc

p þ Rc
pLc

pP
c
pNc

p ¼ 0: ð39Þ
With this sufficient condition in mind, let us examine the conservation of momentum for the control volume formulation
and the area weighted formulation. For the first formulation, the computation of the global balance of momentum, without
taking into account the boundary conditions, yields
d
dt

X
c

mcUc

 !
¼ �

X
c

X
p2PðcÞ

Rc
pLc

pP
c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� aAcPceY

" #
:

Now, switching the summation over cells and the summation over nodes in right-hand side and using (39) one gets
d
dt

X
c

mcUc

 !
¼ a

X
c

AcPc

 !
eY :
This last equation expresses the conservation of momentum for the control volume formulation. Concerning the
area-weighted formulation, we point out that it is not possible to exhibit such a global momentum balance. This comes from
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the fact that the discrete gradient operator used in the area weighted formulation is not compatible with the sufficient con-
dition (39).

The examination of the left-hand side of Eq. (39) allows a mechanical interpretation by introducing the force
Fpc ¼ Rc
pLc

pP
c
pNc

p þ Rc
pLc

pP
c
pNc

p: ð40Þ
This force is a sub-cell force which acts at point p and is related to cell Xc. Thus, the sufficient condition (39) can be viewed as
mechanical balance of the sub-cell forces around point p. Now, substituting the expressions of the nodal pressures given by
the half Riemann problems (35), the sub-cell force is rewritten
Fpc ¼ Rc
pLc

pNc
p þ Rc

pLc
pNc

p

� �
Pc � MpcðUp � UcÞ; ð41Þ
where Mpc is the 2 � 2 matrix defined by
Mpc ¼ Zc
pRc

pLc
pðNc

p � Nc
pÞ þ Zc

pLc
pRc

pðNc
p � Nc

pÞ: ð42Þ
We remark that this matrix is symmetric positive definite, thus always invertible. Finally, using these notations, the suffi-
cient condition (39) can be rewritten under the equivalent form
X

c2CðpÞ
Rc

pLc
pNc

p þ Rc
pLc

pNc
p

� �
Pc � MpcðUp � UcÞ ¼ 0: ð43Þ
The sufficient condition to ensure total energy conservation exhibits, in its final form, a vectorial equation satisfied by the
point velocity Up. This equation allows to construct a nodal solver.

3.7.2. Computation of the nodal velocity
There remains to compute the nodal velocity using Eq. (43). Setting Mp ¼

P
c2CðpÞMpc the system satisfied by the point

velocity Up is written
MpUp ¼
X

c2CðpÞ
Rc

pLc
pNc

p þ Rc
pLc

pNc
p

� �
Pc þ MpcUc: ð44Þ
We remark that the Mp matrix is symmetric positive definite by construction, hence it is always invertible. If we use the
acoustic approximation (coefficient Cc ¼ 0 in Eq. (36)), the mass swept fluxes reduce to the acoustic impedance, i.e.
Zc

p ¼ Zc
p ¼ Zc , then the system (44) becomes linear and it admits a unique solution. In the general case corresponding to

Cc–0, system (44) is non-linear due to the dependence of the mass swept fluxes to the point velocity. Therefore, Up has
to be computed by using an iterative procedure such as a fixed point algorithm. From a theoretical point of view, we cannot
show the convergence of such an algorithm. However, in numerical applications, we have found that few iterations are
needed to get the convergence. Regardless of the type of approximation used, the expressions for the point velocity and
the nodal pressure can be written
Up ¼ M�1
p

X
c2CðpÞ

Rc
pLc

pNc
p þ Rc

pLc
pNc

p

� �
Pc þ MpcUc; ð45aÞ

Pc � Pc
p ¼ Zc

pðUp � UcÞ � Nc
p; ð45bÞ

Pc � Pc
p ¼ Zc

pðUp � UcÞ � Nc
p: ð45cÞ
Finally, using total energy conservation and half Riemann problems, we have constructed a two-dimensional nodal solver,
which can be viewed as a two-dimensional extension of the classical one-dimensional Riemann solver. This nodal solver
is suitable for both control volume and area-weighted formulations. We notice that in the case of Cartesian geometry, it re-
duces to the nodal solver which has been derived in [24,23].

Comment 3. We emphasize that the main difference between the present nodal solver and the previous one derived in
[24,23] lies in the presence of the Rc

p;Rc
p factors in the nodal velocity expression, refer to (45a). These geometric factors

come from the compatible definition of the discrete gradient operator (adjointness with the discrete divergence
operator).
3.7.3. The case of a one-dimensional spherical flow in cylindrical geometry
Here, we show that our nodal solver preserves the spherical symmetry in the case of a one-dimensional spherical flow

computed on an equal angle polar grid such as the one displayed in Fig. 7. Let us consider the point p surrounded by the four
quadrangular cells Xi; i ¼ 1; . . . ;4. To simplify the computation, we use the orthonormal basis ðer ; ehÞ located at point p. Due
to the symmetry of the flow, the thermodynamical quantities are equal in the cells X1;X4 and in the cells X2;X3. The cell-
centered velocities write U1 ¼ U1N1;2; U4 ¼ �U1N3;4; U2 ¼ U2N1;2; U3 ¼ �U2N3;4. Here, N i;iþ1 denotes the counterclockwise
orientated unit normal of the interface shared by cells Xi;Xiþ1 and Ui is the velocity magnitude in cell Xi. In the local basis
ðer; ehÞ we have
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N1;2 ¼
cos Dh

2

� sin Dh
2 ;

 !
; N2;3 ¼

0
1

� 	
; N3;4 ¼

� cos Dh
2

� sin Dh
2

 !
; N4;1 ¼

0
�1

� 	
:

Now, using the acoustic approximation, we evaluate the Mp matrix and RH vector which corresponds to the right-hand side
of (45a). The point velocity is the solution of the linear system MpUp ¼ RH. Some elementary calculations provide the ele-
ments of the matrix Mp
Mp;rr ¼ ðZ1 þ Z2ÞL1;2ðR1;2 þ R3;4Þ cos2 Dh
2
;

Mp;rh ¼ Mp;hr ¼ ðZ1 þ Z2ÞL1;2ðR3;4 � R1;2Þ cos
Dh
2

sin
Dh
2
;

Mp;hh ¼ ðZ1 þ Z2ÞL1;2ðR1;2 þ R3;4Þ sin2 Dh
2

þ 2ðZ1L4;1R4;1 þ Z2L2;3R2;3Þ:
The components of the right-hand side write
RHr ¼ ½Z1U1 þ Z2U2 � ðP2 � P1Þ�L1;2ðR1;2 þ R3;4Þ cos
Dh
2
;

RHh ¼ ½Z1U1 þ Z2U2 � ðP2 � P1Þ�L1;2ðR3;4 � R1;2Þ sin
Dh
2
:

Here, Li;iþ1 and Ri;iþ1 denote the half length and the pseudo radius related to the edge shared by the cells Xi and Xiþ1. We
notice that L1;2 ¼ L3;4 due to the symmetry of the grid. Finally, we get the following result for the components of the point
velocity expressed in the local basis ðer ; ehÞ
up;r ¼ Z1U1 þ Z2U2 � ðP2 � P1Þ
Z1 þ Z2

1
cos Dh

2

; up;h ¼ 0:
The point velocity is radial, hence the nodal solver preserves the spherical symmetry on equal angle polar grid. We have recovered
the classical one-dimensional acoustic Godunov solver modified by a geometrical factor which corresponds to the projection
of the cell velocity direction onto the radial vector er . This geometrical factor has no consequence since cos Dh

2 ! 1 when
Dh ! 0. We point out that the symmetry preservation is due to the fact that the mesh is equally spaced in the angular direc-
tion. If the mesh does not satisfy this assumption, then L1;2–L3;4 and up;h–0.

To achieve this study, we provide the computation of the eight nodal pressures located at point p, refer to Fig. 8. There are
two nodal pressures for each cell surrounding point p, each pressure being associated with the unit outward normal. Hence,
with the present notations, for the cell Xi these pressures are determined as follows
Fig. 7. Fragment of an equal angle polar grid and notations for a one-dimensional spherical flow.
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Pi
p ¼ Pi � ZiðUp � U iÞ � N i;iþ1;

Pi
p ¼ Pi þ ZiðUp � U iÞ � N i�1;i:
Using the expression of the point velocity Up, some elementary algebra leads to
P1
p ¼ P2

p ¼ Z2P1 þ Z1P2 � Z1Z2ðU2 � U1Þ
Z1 þ Z2

;

P2
p ¼ P3

p ¼ P2 � Z2U2 sin
Dh
2
;

P3
p ¼ P4

p ¼ Z2P1 þ Z1P2 � Z1Z2ðU2 � U1Þ
Z1 þ Z2

;

P4
p ¼ P1

p ¼ P1 � Z1U1 sin
Dh
2
:

We note that the nodal pressures located on the two sides of the same edge are equal. For the two edges corresponding to
X1 \ X2 and X3 \ X4, we remark that the nodal pressures are exactly equal to the interface pressure computed from an
acoustic Riemann solver. The remaining edges, which are perpendicular to the angular direction, separate two identical
states, hence the corresponding nodal pressures should coincide with them. However, we notice that the nodal pressure dif-
fers from the constant state up to a geometric factor which is proportional to sin Dh

2 . We observe that this geometric factor will
introduce a viscous term which acts in the angular direction. This term has two bad consequences. Firstly, it implies the loss
of symmetry for the control volume scheme as it has been explained in Section 3.3. Secondly, it prevents our first order
scheme from ensuring the wave front invariance requirement [10]. This shortcoming can be overcome using a high-order
extension, in which the nodal solver uses the extrapolated pressure and velocities at the point, rather than their aver-
aged-cell values.

3.8. Summary of the node-based flux discretization

We summarize the previous results recalling, for both control volume and area weighted formulations, the semi-discrete
evolution equations that constitute a closed set for the unknowns 1

qc
;Uc; Ec

� �
. First, we write the system which corresponds

to the control volume formulation
Fig. 8. Localization of the multiple nodal pressures around point p.
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mc
d
dt

1
qc

� 	
�
X

p2PðcÞ
Rc

pLc
pNc

p þ Rc
pLc

pNc
p

� �
� Up ¼ 0;

mc
d
dt

Uc þ
X

p2PðcÞ
Rc

pLc
pP

c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� aAcPceY ¼ 0;

mc
d
dt

Ec þ
X

p2PðcÞ
Rc

pLc
pP

c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� Up ¼ 0:
To obtain the area weighted formulation, it is sufficient to replace the above discrete momentum equation by the following
one
mc
d
dt

Uc þ Rc

X
p2PðcÞ

Lc
pP

c
pNc

p þ Lc
pP

c
pNc

p ¼ 0:
We notice that the discrete kinematic equation and the nodal solver are common to both formulations. The local kinematic
equation is written
d
dt

Xp ¼ Up; Xpð0Þ ¼ xp;
The point velocity Up and the nodal pressures are obtained thanks to the nodal solver defined by
Up ¼ M�1
p

X
c2CðpÞ

Rc
pLc

pNc
p þ Rc

pLc
pNc

p

� �
Pc þ MpcUc

h i
;

Pc � Pc
p ¼ Zc

pðUp � UcÞ � Nc
p;

Pc � Pc
p ¼ Zc

pðUp � UcÞ � Nc
p;
where the 2 � 2 matrices, Mpc and Mp, are written
Mpc ¼ Zc
pRc

pLc
pðNc

p � Nc
pÞ þ Zc

pRc
pLc

p Nc
p � Nc

p

� �
; Mp ¼

X
c2CðpÞ

Mpc:
We recall that the swept mass fluxes Zc
p and Zc

p are defined by (36).
Finally, we have obtained a first-order cell-centered discretization of the Lagrangian hydrodynamics equations using a

node-based flux discretization. The fluxes and the mesh motion are computed in a compatible way thanks to a nodal solver that
uniquely provides the point velocity and the nodal pressures. The area-weighted scheme preserves the spherical symmetry on
an equal angle polar grid whereas the control volume scheme does not. We also notice that both formulations reduce to the
scheme which has been derived in [23], in the case of the Cartesian geometry.

Comment 4. In the Lagrangian formalism, we have to consider two types of boundary conditions on the border of the
domain D: either the pressure or the normal component of the velocity is prescribed. Here, we do not detail the
implementation of these boundary conditions. Let us notice that they are consistent with our nodal solver. For a detailed
presentation about this topic the reader can refer to [24].
3.9. Entropy inequality for the control volume formulation

We show that our first-order control volume scheme in its semi-discrete form satisfies a local entropy inequality. Using
the Gibbs formula [14], we compute the time rate of change of the specific entropy rc in cell Xc
mcTc
drc

dt
¼ mc

dec

dt
þ Pc

d
dt

1
qc

� 	� �
; ð46Þ
where Tc denotes the mean temperature of the cell. Thanks to the definition of the internal energy this equation is rewritten
mcTc
drc

dt
¼ mc

dEc

dt
� Uc � dUc

dt
þ Pc

d
dt

1
qc

� 	� �
:

We dot-multiply momentum Eq. (31) by Uc and subtract it from the total energy Eq. (37) to get
mc
dEc

dt
� Uc � dUc

dt

� �
¼ �

X
p2PðcÞ

Rc
pLc

pP
c
pNc

p þ Rc
pLc

pP
c
pNc

p

� �
� ðUp � UcÞ � aAcPcUc � eY :
The pressure work is computed by multiplying (27) by Pc
Pcmc
d
dt

1
qc

� 	
¼
X

p2PðcÞ
Rc

pLc
pPcNc

p þ Rc
pLc

pPcNc
p

� �
� Up ¼

X
p2PðcÞ

Rc
pLc

pPcNc
p þ Rc

pLc
pPcNc

p

� �
� ðUp � UcÞ þ aAcPcUc � eY :
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The last line of the previous equation comes from the geometric identity
X
p2PðcÞ

Rc
pLc

pNc
p þ Rc

pLc
pNc

p

� �
¼ aAceY :
Finally, the combination of the previous results leads to
mcTc
drc

dt
¼
X

p2PðcÞ
Rc

pLc
p Pc � Pc

p

� �
Nc

p þ Rc
pLc

p Pc � Pc
p

� �
Nc

p

h i
� ðUp � UcÞ: ð47Þ
With the help of the half Riemann problems (35), we deduce the final expression for the time rate of change of the specific
entropy within cell Xc
mcTc
drc

dt
¼
X

p2PðcÞ
MpcðUp � UcÞ � ðUp � UcÞ: ð48Þ
Since the 2 � 2 matrix Mpc is symmetric positive definite, the right-hand side of (48) is a quadratic form which is always po-
sitive. Consequently, our control volume scheme is such that entropy increases in the cell Xc , that is drc

dt P 0. This important
property ensures that the kinetic energy is properly dissipated into internal energy. The examination of (48) right-hand side
shows a tensorial structure of the entropy dissipation rate which is quite similar to the artificial viscosity used in two-dimen-
sional staggered Lagrangian schemes [8,10].

3.10. Entropy inequality for the area weighted formulation

We note that it is not possible to write such an entropy inequality for the area-weighted scheme. This impossibility comes
from the fact that the discrete gradient operator associated with this scheme is not compatible with the discrete divergence
operator.

Comment 5. We must admit that our entropy production term is always active even in the case of isentropic flows. For such
flows our scheme does not conserve entropy. This property is typical from Godunov-type schemes. However, this extra
entropy production can be dramatically decreased by using a high-order extension of the scheme as we shall see in Section 6.
4. The two-dimensional high-order extension

We present a two-dimensional high-order extension for both control volume and area-weighted schemes. This high-or-
der extension uses a one-step time integrator based on the so-called GRP (Generalized Riemann Problem) methodology
which has been derived by Ben-Artzi and Falcovitz [4–6]. This methodology consists in solving the higher-order Riemann
problem with piecewise linear polynomials, whereby the approximate solution is given as a time power series expansion
right at the interface, thus providing a numerical flux for a high-order Godunov-type method. Ben-Artzi and Falcovitz have
developed GRP schemes for the one-dimensional compressible gas dynamics equations written in Lagrangian and Eulerian
formalisms. In [6], they have also presented a two-dimensional extension using the Strang directional splitting. In the pres-
ent study, we develop an original genuinely two-dimensional Lagrangian extension which uses the node-based flux discret-
ization previously described. Our derivation employs the acoustic approximation of the GRP method. This approximation
provides a framework in which the solution of the GRP is simple to compute and easy to handle. In the Lagrangian one-
dimensional case, this approximation has been thoroughly described in the monograph [6], we have also recalled it in
[23]. We note that a Riemann invariants approach could have been also used, following the methodology developed in [21].

In what follows, we describe the main algorithm for the two-dimensional Lagrangian hydrodynamics, which allows a
straightforward implementation of our high-order extension. Then, we detail the crucial step corresponding to the compu-
tation of the time derivatives of the node-based fluxes.

4.1. Description of the GRP algorithm

Let 1
qn

c
;Un

c ; E
n
c

� �
be the mass-averaged values of 1

q ;U; E
� �

over the cell Xn
c at time t ¼ tn. We assume that all the geometric

quantities are known at time tn. We describe the two-dimensional implementation of the GRP scheme through the following
four steps.

Step 0. Construct a piecewise monotone linear representation of the velocity field and the pressure over the cell Xn
c at time tn
UcðXÞ ¼ Un
c þ ðrUÞc � X � Xn

c


 �
;

PcðXÞ ¼ Pn
c þ ð$PÞc � X � Xn

c


 �
;

where Xn
c denotes the centroid of Xn

c ; ðrUÞc and ð$PÞc are respectively the piecewise constant velocity and pressure
gradients in Xn

c .



Step 1. Being given the piecewise linear pressure and velocity at time tn over the cell Xn
c , we solve the Riemann problem

for the two-dimensional gas dynamic equations at each point p. With the help of the nodal solver previously devel-
oped, determine the point velocity Un

p and the nodal pressures Pc;n
p , Pc;n

p using the extrapolated pressure and veloc-
ity at point p
Un
p ¼ Mn

p

� ��1 X
c2CðpÞ

Rc;n
p Lc;n

p Nc;n
p þ Rc;n

p Lc;n
p Nc;n

p

� �
Pc Xn

p

� �
þ Mn

pcUc Xn
p

� �h i
;

Pc Xn
p

� �
� Pc;n

p ¼ Zc;n
p Un

p � Uc Xn
p

� �h i
� Nc;n

p ;

Pc Xn
p

� �
� Pc;n

p ¼ Zc;n
p Un

p � UcðXn
pÞ

h i
� Nc;n

p :

Here, the superscript n is used for geometrical quantities such as lengths and normals to emphasize the fact that
they are evaluated at time tn. 
 � 
 � 
 � 
 �
Step 2. Determine the time derivatives dU
dt

n

p;
dP
dt

c;n

p ; dP
dt

c;n

p ; dP
dt

n

c and compute the midpoint values
Unþ1
2

p ¼ Un
p þ Dt

2
dU
dt

� 	n

p
; ð49aÞ

P
c;nþ1

2
p ¼ Pc;n

p þ Dt
2

dP
dt

� 	c;n

p
; ð49bÞ

P
c;nþ1

2
p ¼ Pc;n

p þ Dt
2

dP
dt

� 	c;n

p

; ð49cÞ

P
nþ1

2
c ¼ Pn

c þ Dt
2

dP
dt

� 	n

c

: ð49dÞ

Here, we have introduced the time derivatives corresponding to the node-based fluxes Up;P
c
p and Pc

p defined at
point p. We have also introduced the time derivative of the cell pressure, Pc , that will be used in the momentum
equation for the control volume scheme.
Step 3. Compute the motion of the mesh thanks to the discrete kinematic equation
Xnþ1
p � Xn

p ¼ DtUnþ1
2

p ; ð50Þ
and update the geometrical quantities. Then, evaluate the new averaged values 1
qnþ1

c
;Unþ1

c ; Enþ1
c

� �
using the updat-

ing formulae
qnþ1
c ¼ mc

Vnþ1
c

;

mcðUnþ1
c � Un

c Þ þ Dt
X

p2PðcÞ
Rc;n

p Lc;n
p P

c;nþ1
2

p Nc;n
p þ Rc;n

p Lc;n
p P

c;nþ1
2

p Nc;n
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The density computed from this equation is rigorously the same than that computed from mass conservation provided that
the time integral of the node area vector is computed exactly. This requirement is fulfilled if one employs the Simpson’s rule
to define the numerical integration, i.e.
X

p2PðcÞ

Z tnþ1

tn
Ac

pðtÞdt ¼ Dt
6

Ac
pðtnÞ þ 4Ac

p tnþ1
2

� �
þ Ac

pðtnþ1Þ
h i

;

where tnþ1
2 ¼ tn þ Dt

2 , since this quadrature rule is exact for quadratic functions. For the momentum and the total energy equa-
tions, we have used the geometrical quantities evaluated at the beginning of the time step in order to rigorously ensure the
conservativity of the scheme. This last point shall be explained in the subsequent section.

In what follows, we are going to detail step 2, knowing that the monotone piecewise linear reconstruction has already
been described in [23]. Let us recall that this piecewise linear reconstruction is performed using a least squares method, fol-
lowed by a multi-dimensional slope limitation procedure, which is known as the Barth–Jespersen limitation [2,3].

4.2. Computation of the time derivatives

For sake of completeness, we recall the explanations that have been firstly introduced in [23].

4.2.1. Characteristic equations
The first step for computing the time derivatives, consists in writing the characteristic equations for the two-dimensional

gas dynamics equations [18]. We recall that by using the nonconservative variables ðP;U;rÞ, the gas dynamics equation can
be written in nonconservative form
dP
dt

þ qa2r � U ¼ 0; ð51aÞ

dU
dt

þ 1
q

$P ¼ 0; ð51bÞ

dr
dt

¼ 0; ð51cÞ
where r denotes the specific entropy. Let N ¼ ðNX ;NY Þt denote a particular vector of R2. The Jacobian matrix in the direction
N related to the previous system is written
AðNÞ ¼

0 qa2NX qa2NY 0
NX
q 0 0 0

NY
q 0 0 0

0 0 0 0

0BBBB@
1CCCCA:
The eigenvalues are easily found to be 0 and �akNk. Thus, we have two simple eigenvalues, which for kNk ¼ 1 are k ¼ �a
associated with acoustic waves, and k ¼ 0 of multiplicity 2 associated with the entropy waves. To obtain the characteristic
equations in the direction N associated with the acoustic waves, we dot-multiply Eq. (51b) by �qaN and add it to Eq. (51a) to
get
Fig. 9. Generalized Riemann problem at point p.
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dP
dt

þ a$P � N þ qa
dU
dt

� N þ ar � U
� 	

¼ 0; associated with eigenvalue a; ð52aÞ

dP
dt

� a$P � N � qa
dU
dt

� N � ar � U
� 	

¼ 0; associated with eigenvalue � a; ð52bÞ
where N denotes any unit vector.

4.2.2. Construction of a nodal acoustic GRP solver
The second step consists in solving the acoustic GRP problem in the framework of our nodal solver. At time t ¼ tn, let us

consider a point p and assume that the flow variables in the surrounding cells are all continuous at X ¼ Xp. The pressure and
the velocity are continuous and linear, but we allow jumps in their slopes, that is, their slopes are piecewise constant. Let N
denote the unit normal to the interface between cells c and d, see Fig. 9. In what follows, we omit the superscript n related to
time in order to simplify the notations. We assume that U, P and their derivatives are continuous across the characteristics in
the direction N associated with the acoustic waves. The time derivatives are defined by setting
dU
dt

� 	
p

¼ lim
t!tn

dU
dt

ðXp; tÞ; ð53aÞ

dP
dt

� 	c

p
¼ lim

t!tn
lim
g!0

dP
dt

ðXp � gN; tÞ; ð53bÞ

dP
dt

� 	d

p
¼ lim

t!tn
lim
g!0

dP
dt

ðXp þ gN; tÞ; ð53cÞ
where g > 0. In the vicinity of Xp and for t ! tn, the continuity of the derivative of P; dP
dt � a$P � N (resp. dP

dt þ a$P � N), across
the characteristic in the direction N associated with the eigenvalue �a (resp. a), leads to
dP
dt

� 	c

p

� acð$PÞc
p � N ¼ dP

dt

� 	
c

� acð$PÞc � N; ð54aÞ

dP
dt

� 	d

p

þ adð$PÞd
p � N ¼ dP

dt

� 	
d

þ adð$PÞd � N: ð54bÞ
Here, we have expressed the derivatives in two ways, approaching the characteristic from either side. We notice that we
have kept the two-sided notation (such as ac; ad which are equal) in the previous equations so that we can use them in
the numerical applications even for discontinuous states. Concerning the notations, we have set
ð$PÞc
p ¼ lim

t!tn
lim
g!0

$PðXp � gN; tÞ; ð$PÞd
p ¼ lim

t!tn
lim
g!0

$PðXp þ gN; tÞ:
The other notations are displayed in Fig. 10. With the help of Eq. (51b), we get
ð$PÞc
p ¼ �qc

dU
dt

� 	
p

; ð$PÞd
p ¼ �qd

dU
dt

� 	
p

:

Structure of the Generalized Riemann problem at point p in the direction of the unit normal N. Note that f ¼ X � N is the variable in the direction of
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The time derivatives of pressure in the right-hand side of (54) are expressed thanks to Eq. (51a) and we finally obtain
dP
dt

� 	c

p
þ Zc

dU
dt

� 	
p

� N ¼ �ac ð$PÞc � N þ Zcðr � UÞc

� 

; ð55aÞ

dP
dt

� 	d

p
� Zd

dU
dt

� 	
p

� N ¼ ad ð$PÞd � N � Zdðr � UÞd

� 

: ð55bÞ
In the left-hand sides of the previous equations the pressure gradient is obtained using the piecewise linear reconstruction.
Regarding the velocity divergence, it is computed taking the trace of the velocity gradient, that is ðr � UÞc ¼ Tr½ðrUÞc�. Sub-
tracting (55a) from (55b) we get
dP
dt

� 	d

p
� dP

dt

� 	c

p
¼ ðZc þ ZdÞ dU

dt

� 	
p

� N � _VH

c;d

" #
;

where _VH

c;d is defined as follows
_VH

c;d ¼ � ac½ð$PÞc � N þ Zcðr � UÞc� þ ad½ð$PÞd � N � Zdðr � UÞd�
Zc þ Zd

:

It turns out that _VH

c;d is the normal component of the one-dimensional solution of the acoustic GRP problem in the direction of
the unit normal N, refer to [23]. Therefore, the time derivatives of the nodal pressures are equal if and only if the projection of
the time derivative of the node velocity onto the unit normal is equal to _VH

c;d. Since in general dU
dt


 �
p � N– _VH

c;d, we have the dis-
continuity dP

dt


 �c

p– dP
dt


 �d

p.

Finally, for each face, we introduce four time derivatives of the pressure, two for each node on each side of the edges. The
discontinuity of these time derivatives across the face implies the loss of total energy conservation, on the contrary to the
one-dimensional case. In what follows, we shall show how to compute these time derivatives by recovering total energy
conservation.

We study total energy conservation writing the global balance of energy without taking into account the boundary con-
ditions. The summation of the discrete total energy equation, refer to Step 3, over all the cells leads to
X

c

mc Enþ1
c � En

c

� �
¼ �Dt

X
c

X
p2PðcÞ

Rc;n
p Lc;n

p Pc;n
p Nc;n

p þ Rc;n
p Lc;n

p Pc;n
p Nc;n

p

� �
� Unþ1

2
p

� ðDtÞ2

2

X
c

X
p2PðcÞ

Rc;n
p Lc;n

p
dP
dt

� 	c;n

p

Nc;n
p þ Rc;n

p Lc;n
p

dP
dt

� 	c;n

p

Nc;n
p

" #
� Unþ1

2
p

Here, we have expressed the nodal pressures P
c;nþ1

2
p , P

c;nþ1
2

p thanks to the Taylor expansions (49b) and (49c). Switching the
summation over cells and the summation over nodes in the right-hand side of the previous equation, we get
X

c

mc Enþ1
c � En

c

� �
¼ �Dt

X
p

X
c2CðpÞ

Rc;n
p Lc;n

p Pc;n
p Nc;n

p þ Rc;n
p Lc;n

p Pc;n
p Nc;n

p

� �
� Unþ1

2
p

� ðDtÞ2

2

X
p

X
c2CðpÞ

Rc;n
p Lc;n

p
dP
dt

� 	c;n

p

Nc;n
p þ Rc;n

p Lc;n
p

dP
dt

� 	c;n

p

Nc;n
p

" #
� Unþ1

2
p

By construction of the nodal solver, the term between parentheses in the right-hand side cancels. Then, total energy conser-
vation at the discrete level is ensured, provided that the term between brackets in the right-hand side cancels. Therefore, we
deduce the following sufficient condition to ensure discrete total energy conservation
X

c2CðpÞ
Rc;n

p Lc;n
p

dP
dt

� 	c;n

p
Nc;n

p þ Rc;n
p Lc;n

p

dP
dt

� 	c;n

p
Nc;n

p

" #
¼ 0: ð56Þ
We claim that this condition also implies the conservation of momentum for the control volume scheme, in the sense that
the following balance is satisfied
X

c

mcðUnþ1
c � Un

c Þ ¼ aDt
X

c

A
nþ1

2
c P

nþ1
2

c eY :
We note that condition (56) expresses the balance of the forces per unit time induced by the discontinuity of the time deriv-
atives of the nodal pressures. The times derivatives of the nodal pressures, dP

dt


 �c;n

p and dP
dt


 �c;n

p are linked to the time derivative
of the point velocity, dU

dt


 �n

p , with the help of the following equations
dP
dt

� 	c;n

p
þ Zn

c
dU
dt

� 	n

p
� Nc;n

p ¼ �an
c ð$PÞc � Nc;n

p þ Zn
c ðr � UÞc

h i
; ð57aÞ

dP
dt

� 	c;n

p

þ Zn
c

dU
dt

� 	n

p

� Nc;n
p ¼ �an

c ð$PÞc � Nc;n
p þ Zn

c ðr � UÞc

h i
: ð57bÞ
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These equations are obtained writing the continuity of the derivatives of P; dP
dt � a$P � Nc;n

p and dP
dt � a$P � Nc;n

p , across the char-
acteristics in the directions Nc;n

p and Nc;n
p associated with the eigenvalue �a. Once more, this is done in the vicinity of Xp and

for t ! tn (refer to Fig. 11). It turns out that the combination of (56) and (57) written for each cell surrounding point p, con-
stitutes a closed set of equations that allows to determine the time derivatives. Substituting Eqs. (57a) and (57b) into the
sufficient condition (56), one obtains
Gp
dU
dt

� 	n

p
¼ �

X
c2CðpÞ

an
c Gc

pðrPÞc þ Zn
c Rc;n

p Lc;n
p Nc;n

p þ Rc;n
p Lc;n

p Nc;n
p

� �
ðr � UÞc

h i
;

where Gc
p and Gp are the 2 � 2 matrices defined by
Gc
p ¼ Zn

c Rc;n
p Lc;n

p ðNc;n
p � Nc;n

p Þ þ Rc;n
p Lc;n

p ðNc;n
p � Nc;n

p Þ
h i

; Gp ¼
X

c2CðpÞ
Gc

p:
We note that these matrices coincide with the matrices Mp and Mc
p introduced in the nodal solver in the case of the acoustic

approximation. Matrices Gc
p and Gp are symmetric positive definite, thus Gp is always invertible and the time derivative of the

point velocity is written
dU
dt

� 	n

p
¼ �G�1

p

X
c2CðpÞ

an
c Gc

pðrPÞc þ Zn
c Rc;n

p Lc;n
p Nc;n

p þ Rc;n
p Lc;n

p Nc;n
p

� �
ðr � UÞc

h i
: ð58Þ
The time derivatives of the nodal pressures are deduced from (57).
Finally, we have constructed a nodal solver to compute the time derivatives of the node-based fluxes. This solver can be

viewed as the two-dimensional extension of the one-dimensional acoustic GRP solver derived by Ben-Artzi and Falcovitz. We
note that this nodal solver can handle both control volume and area weighted formulations. Moreover, it ensures rigorously
total energy conservation at the discrete level.

Comment 6. A closer inspection of the formulae (58) and (57) reveals that by setting the slopes to zero in the piecewise
linear reconstruction, the time derivatives of the node-based fluxes cancel out. Hence, our algorithm recovers naturally the
first-order scheme.
4.2.3. Computation of the time derivative of the cell pressure
For the control volume scheme, we need to compute the time derivative of the cell pressure, dP

dt


 �n

c . This computation is
easily performed using Eq. (51a) and we finally obtain
dP
dt

� 	n

c
¼ �qca2

c ðr � UÞc;
where the divergence of the velocity is obtained through the use of the piecewise linear reconstruction.

5. Time step control

For numerical applications, the time step is evaluated following two criteria. The first one is a standard CFL criterion
which heuristically guarantees the monotone behavior of the entropy. The second is more intuitive, but reveals very useful
in practice: we limit the variation of the volume of cells over one time step.
Fig. 11. Localization of the time derivatives of the nodal pressures and velocity at point p viewed from cell Xn
c .
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5.1. CFL like criterion

We propose a CFL like criterion in order to ensure a positive entropy production in cell Xc during the time step. At time tn,
for each cell Xc we denote by Ln

c the minimal value of the distance between two points of the cell. We define
DtE ¼ CE min
c

Ln
c

an
c
;

where CE is a strictly positive coefficient and ac is the sound speed in the cell. The coefficient CE is computed heuristically and
we provide no rigorous analysis which allows such formula. However, extensive numerical experiments show that CE ¼ 0:25
is a value which provides stable numerical results. We have also checked that this value is compatible with a monotone
behavior of entropy. The rigorous derivation of this criterion could be obtained by computing the time step which ensures
a positive entropy production in cell Xc from time tn to tnþ1.

5.2. Criterion on the variation of volume

We require that a cell does not change its volume by too large an amount in a time step. We estimate the volume of the
cell Xc at t ¼ tnþ1 through the use of the Taylor expansion
Vnþ1
c ¼ Vn

c þ d
dt

VcðtnÞDt:
Here, the time derivative d
dt Vc is computed using the discrete GCL. Let CV be a strictly positive coefficient, CV 2�0;1½. We look

for Dt such that
jVnþ1
c � Vn

c j
Vn

c

6 CV :
To do so, we define
DtV ¼ CV min
c

Vn
c

j d
dt VcðtnÞj

( )
:

For numerical applications, we choose CV ¼ 0:1.
Last, the estimation of the next time step Dtnþ1 is given by
Dtnþ1 ¼ min DtE;DtV ; CMDtnð Þ; ð59Þ
where Dtn is the current time step and CM is a multiplicative coefficient which allows the time step to increase. We generally
set CM ¼ 1:01.

6. Numerical results

In this section, we present several test cases to assess the robustness of the control volume and the area-weighted
schemes. For each problem, we use a perfect gas equation of state which is taken to be of the form P ¼ ðc � 1Þqe, where
c is the polytropic index. The computations have been made using the Dukowicz approximation for the nodal solver [16],
namely the coefficient Cc in the mass swept flux is set equal to cþ1

2 .

6.1. Spherical Sod problem

Here, we consider the extension of the classical Sod shock tube [32] to the case of spherical geometry. The present prob-
lem consists of a spherical shock tube of unity radius. The interface is located at r ¼ 0:5. At the initial time, the states on the
left and on the right sides of the interface are constant. The left state is a high pressure fluid characterized by
ðqL; PL;uLÞ ¼ ð1;1;0Þ, the right state is a low pressure fluid defined by ðqR; PR;uRÞ ¼ ð0:125;0:1;0Þ. The gamma gas law is de-
fined by c ¼ 7

5. The computational domain is defined in polar coordinates by ðr; hÞ 2 ½0;1� � 0;P2
� 


where r ¼ pðx2 þ y2Þ and
h ¼ arctan y

x


 �
. The initial grid is a polar grid with 100 � 9 equally spaced zones both in the radial and angular direction.

The boundary conditions are wall boundary conditions, that is, the normal velocity is set to zero at each boundary.
The aim of this test case is to assess the symmetry preservation ability for the area-weighted and control volume

schemes. In what follows, we define a numerical indicator that measures the loss of symmetry preservation. The polar grid
is described using logical j-lines radially outward and logical i-lines in the angular direction. For the logical i-line, let us intro-
duce the averaged radius
Ri ¼ 1
J þ 1

XJþ1

j¼1

Ri;j;
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where J þ 1 denotes the number of logical j-lines and Ri;j is the radius of the node located at the intersection of the logical i-
lines and the logical j-line. Then, we define the difference between the averaged radius and the generic radius along the log-
ical i-line
DRi ¼ max
j¼1;...;Jþ1

jRi;j � Rij:
Finally, we introduce the global indicator which characterizes the symmetry preservation by setting
DR ¼ max
i¼1;...;Iþ1

DRi;
where I þ 1 denotes the number of logical i-lines.
We run the Spherical Sod problem using the high-order area-weighted scheme and the first and high-order control vol-

ume scheme. The corresponding DR indicators are displayed in Fig. 12 as function of time, using a logarithmic scale.
We remark that symmetry preservation is ensured to numerical roundoff for the area-weighted scheme. As expected, the

control volume scheme does not ensure symmetry preservation. However, it is interesting to note that the high-order exten-
sion performs better than the first-order version, as it can be seen in Fig. 13. This last result corroborates the theoretical
study that has been performed in Section 3.7.3 concerning the symmetry preservation in the case of a one-dimensional
spherical flow in cylindrical geometry.

We have also displayed in Fig. 14 the numerical density computed with the high-order area-weighted scheme as function
of the cell center radius versus a reference solution. This reference solution has been computed using a one-dimensional sec-
ond-order spherical Lagrangian code with 10,000 cells. We note the good agreement between the numerical and the refer-
ence solution. One can clearly see the non-oscillatory behavior of the proposed high-order scheme. We emphasize that in
particular the beginning and the end of the rarefaction fan are difficult to capture and that especially here, our high-order
scheme performs quite well.

6.2. Kidder’s isentropic compression

In [20], Kidder has analytically computed the solution of the self-similar isentropic compression of a shell filled with per-
fect gas. This analytical solution is particularly useful in order to assess the ability of a Lagrangian scheme to properly com-
pute a spherical isentropic compression. More precisely, we want to check that the area-weighted scheme does not produce
spurious entropy during the isentropic compression.

We briefly recall the main features of this solution in order to define the test case. Initially, the shell has the internal (resp.
external) radius rb (resp. re). Let Pb; Pe;qb, and qe be the pressures and densities located at rb and re. Since the compression is

isentropic, we define s ¼ Pe
qc

e
, and we have qb ¼ q e

Pb
Pe

� �1
c
. Let Rðr; tÞ be the radius at time t > 0 of a fluid particle initially lo-

cated at radius r. Looking for a solution of the gas dynamics equation under the form Rðr; tÞ ¼ hðtÞr, using the isentropic fea-
Fig. 12. Symmetry preservation indicator as function of time for the spherical Sod problem.
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ture of the flow and setting c ¼ 1 þ 2
m, where m ¼ 1;2;3 indicates planar, cylindrical or spherical symmetry, we finally get the

self-similar analytical solution for t 2 ½0; s½
qðRðr; tÞ; tÞ ¼ hðtÞ� 2
c�1q0

Rðr; tÞ
hðtÞ

� �
;

uðRðr; tÞ; tÞ ¼ d
dt

hðtÞ Rðr; tÞ
hðtÞ ;

PðRðr; tÞ; tÞ ¼ hðtÞ� 2c
c�1P0

Rðr; tÞ
hðtÞ

� �
:
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Here, s denotes the focusing time of the shell which is written
Fig. 1
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � 1

2
r2

e � r2
b

a2
e � a2

b

s
;

where a2 ¼ scqc�1 is the square of the isentropic sound speed. The particular form of the polytropic index enables us to get

the analytical expression hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t

s


 �2
q

, which is valid for any t 2 ½0; s½. Note that hðtÞ goes to zero when t goes to s, hence

s corresponds to the collapse of the shell on itself. For r 2 ½rb; re�, the initial density and pressure, q0; P0, are defined by
q0ðrÞ ¼ r2
e � r2

r2
e � r2

b

qc�1
b þ r2 � r2

b

r2
e � r2

b

qc�1
e

� 	 1
c�1

;

P0ðrÞ ¼ sðq0ðrÞÞc:
Note that the initial velocity is equal to zero since the shell is assumed to be initially at rest. The isentropic compression is
obtained imposing the following pressure laws at the internal and external faces of the shell:
PðRðrb; tÞ; tÞ ¼ PbhðtÞ� 2c
c�1;

PðRðre; tÞ; tÞ ¼ PehðtÞ� 2c
c�1:
We point out that the velocity field is a linear function of the radius R which is a typical property of self-similar isentropic
compression.

For numerical applications, we consider the spherical shell characterized by rb ¼ 0:9 and re ¼ 1. We set Pb ¼ 0:1; Pe ¼ 10,
and qe ¼ 10�2. Due to spherical symmetry we have m ¼ 3, hence c ¼ 5

3. The previous values lead to qb ¼ 6:31�
10�4; s ¼ 2:15 � 104 and, s ¼ 6:72 � 10�3.

The initial computational domain is defined in polar coordinates by ðr; hÞ 2 ½0:9;1� � 0; p6
� 


, where r ¼
ffiffi
ð

p
x2 þ y2Þ and

h ¼ arctanðy
xÞ. The computational domain is paved using equally spaced zones in the radial and the angular directions. Kid-

der’s problem is run with the three following polar grids: 25 � 15, 50 � 30 and 100 � 60. The stopping time is chosen to be
very close to the focusing time setting ts ¼ 0:99s. The computations are performed with the high-order scheme using the
Barth–Jespersen limiter. To precisely estimate the entropy production we define the entropy parameter
a ¼ P
sqc :
We note that for a perfect isentropic compression a is equal to one.
We have plotted in Fig. 15 the radial component of the velocity versus the analytical solution at the stopping time. We

note that the linear feature of the velocity is very well preserved. We can also see the convergence of the numerical solutions
toward the analytical one. In order to evaluate the entropy production, we have displayed in Fig. 16 the entropy parameter
for the high-order GRP scheme. It turns out that the high-order GRP extension dramatically decreases the value of the en-
5. Kidder’s isentropic compression. Radial component of the velocity as function of radius versus analytical solution at stopping time ts ¼ 0:99s.



Fig. 16. Kidder’s isentropic compression. Entropy parameter as a function of radius versus analytical solution at stopping time ts ¼ 0:99s.
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tropy parameter and reaches the analytical value. Therefore, we can conclude that our GRP high-order area-weighted
scheme is able to compute properly isentropic compressions.

6.3. Saltzman problem

This test case taken from [17] is a well known difficult problem that evaluates the robustness of Lagrangian schemes. It
consists of a strong piston-driven shock wave calculated using an initially nonuniform mesh. The computational domain is
defined by ðx; yÞ 2 ½0;1� � ½0;0:1�. The skewed initial mesh, displayed in Fig. 17, is obtained transforming a uniform 100 � 10
Cartesian grid with the mapping
i

xsk ¼ x þ ð0:1 � yÞ sinðpxÞ;
ysk ¼ y:
F

The initial conditions are ðq0; e0;U0Þ ¼ ð1;10�6;0Þ and the polytropic index is c ¼ 5
3. At x ¼ 0, a unit inward normal velocity is

prescribed, the other boundary conditions are reflective ones. The analytical solution is a one-dimensional infinite strength
shock wave that moves at speed D ¼ 4

3 in the right direction. Thus, the shock wave hits the face x ¼ 1 at time t ¼ 0:75. Behind
the shock, the density is equal to 4. Fig. 18 shows the grid and the density in all the cells as a function of cell-center X coor-
dinate at t ¼ 0:8 after the shock has hit the fixed wall at X ¼ 1 and has bounced part way back toward the moving piston. The
area-weighted scheme has been used; the density should be 4 and 10 in the two regions and is close to these values. We also
notice the good agreement of the shock position with its analytical value X shock ¼ 29

30 � 0:967. In Fig. 19, the same plots are
displayed using the control volume scheme. The discrepancies between the results obtained using both schemes are quite
important and essentially localized in the shock plateau region.

6.4. Sedov problem

We consider the Sedov problem for a point-blast in a uniform medium with spherical symmetry. An exact solution based
on self-similarity arguments is available, see for instance [19]. The initial conditions are characterized by
ðq0; P0;U0Þ ¼ ð1;10�6;0Þ and the polytropic index is set equal to 7

5. We set an initial delta-function energy source at the origin
prescribing the pressure in the cell containing the origin as follows



Fig. 18. Saltzman piston problem for the area-weighted scheme at time t ¼ 0:8. Grid (left). Density in all the cells as a function of cell-center X coordinate
(right).

Fig. 19. Saltzman piston problem for the control volume scheme at time t ¼ 0:8. Grid (left). Density in all the cells as a function of cell-center X coordinate
(right).

Fig. 20. Grid at the sto